BASE2

SERVICES

eBOOK

Creating a Deployment First Strateqy
VWhen Containerizing .Net on AWS

BASE2

eBOOK | Creating a Deployment First Strategy SERVICES
When Containerizing .Net on AWS

Migrating workloads to the AWS cloud is a primary driver for modernizing
applications. For companies producing SaaS solutions or other applications for the
market, reducing costs and speeding development and deployment is key to
maintaining revenues and increasing the ability to scale.

You may currently be on-premise or using another cloud provider and wish to
migrate to the AWS cloud with applications based on the former .NET framework.

If you move these applications to the latest .NET version (known previously as .NET
5/Core), you can modernize your application with containers, improve your
deployment strategy and reduce costs by using hon-Windows-based machines at
the same time.

This can be accomplished by implementing a better CI/CD process, based on the
open-source frameworks and tooling available through Linux containers and cloud-
native architecture.

Migrating your application to the latest .NET version and containerizing can
conceivably be done in-house. However, your developers may not have the time to
devote to this process without negatively impacting workflows and production.

There are multiple ways to migrate your application, but in many cases, the full
implications aren’t recognized. If only the code gets ported, then modernization isn’t
fully leveraged and the benefits cannot be fully realized.

A successful approach to migration hinges on identifying and targeting how and
where the greatest benefits can be obtained from a deployment-first strategy. The
key focus should be on taking your company from a monolith environment to a
lower-cost, Microservices based containerized environment as effortlessly as
possible.

base2services.com.au

BASE2

eBOOK | Creating a Deployment First Strategy SERVICES
When Containerizing .Net on AWS

Is It Time to Migrate?

Challenges of remaining on older versions of .NET in large part relate to being limited
to a monolith-type architecture. You have to use proprietary software, can’t use a
Linux environment and miss out on the multiple benefits provided by
containerization.

Many people think the challenge of migration will be bigger than it is, but it’s not very
hard to figure out where gaps are, and how to get there with proper analysis. Even
when migration is undertaken, far too many companies then fail to follow through
and leverage all of the newfound capabilities that come with a deployment first
approach.

I's increasingly clear that migration to the latest version of .NET is something
everyone needs to do eventually. What may not be clear are the benefits a complete
modernization can offer. Migrating gives you the ability to run your application at a
lower cost and delivers greater portability across platforms, better security, and more
consistency overall.

You'll be able to run faster to achieve shorter deployment timeframes, scale as a
whole or in segments as needed, and handle failure events with little to no
involvement from staff. However, this can only be achieved by putting effort into the
deployment strategy and ensuring your developers are governed by this strategy to
achieve a modernized platform.

Not sure if you are ready to make the move to the latest version of .NET and Linux

containerization? Your organization might be closer to being able to shift than you

realize. An analysis could reveal that the steps needed to prepare you for the move
might be fewer and much less complex than you think.

What is a Deployment First Strategy?

Deployment first focuses on the potential for cost savings and scaling through the
implementation of rapid continuous integration, continuous deployment (CI/CD) and
automation. An approach that enables application development teams to deliver
code changes more frequently and reliably.

b |
n
L]
L]
L]
]
L]
L]
= Deploy Task
[]
L]
L]
]
[]
]
L]

L

- |</>

Application
Load
Balancer

AWS
CodePipeline

Antifacts

A deployment first CD architecture

Pull I

Container
Registry

base2services.com.au

BASE2

eBOOK | Creating a Deployment First Strategy SERVICES
When Containerizing .Net on AWS

CI/CD basics

Cl establishes an automated, consistent way to build, package and test applications,
helping teams collaborate more effectively, commit code changes more frequently,
and improve software quality. CD carries on this process, automating the delivery of
applications to selected infrastructure, development and testing environments.

Continuous testing can be implemented as a set of automated regression,
performance and other tests executed in the CI/CD pipeline. Unlike in a monolith
environment, where deployments are expensive and therefore infrequent, a Cl/CD
DevOps practice allows passing builds to be deployed directly to production
environments on a daily or even hourly schedule.

Benefits of CI/CD pipelines

Cl/CD pipelines are ideal for businesses that need to both improve applications
frequently and maintain a reliable delivery process. By using this pipeline to
standardize builds, develop tests and automate deployments, you facilitate a stable
manufacturing process for deploying code changes.

This DevOps best practice helps address imbalances between developers who seek
to push frequent changes, and operations that desire stable applications. By
integrating automation, developers can push changes more frequently, in stable
environments that provide greater operational stability.

Since all environments have standard configurations, the delivery process can
include rigorous and continuous testing. Environment variables can be effortlessly
separated from the application, and rollback procedures automated. This keeps your
developers focused on the task of enhancing and improving applications, rather than
on the system details of delivery.

Impact of implementing CI/CD pipelines can be reported on through predetermined
DevOps key performance indicators (KPIs) such as deployment frequency, change
lead time and incident mean time to recovery (MTTR).

By treating the entire infrastructure and CI/CD pipeline as code, automation of many
processes becomes possible, cutting down on demands on your developers and
allowing you to speed up DevOps processes. It also enables you to implement
version control branching.

base2services.com.au

BASE2

eBOOK | Creating a Deployment First Strategy SERVICES
When Containerizing .Net on AWS

Cost Benefits of a Deployment First approach

The initial costs of developing a CI/CD process are higher than manually building the
infrastructure and releasing code. However, the ongoing cost benefits are far greater
and can easily balance the investment.

An environment that is manually built requires manual patching on a regular basis to
remain secure, up to date, and stable. Manual patching also requires downtime, and
(in most cases) a manual restart if an environment ever falls over. Consistency
between production, test and development environments can be difficult to maintain,
potentially impacting production deployments with buggy software.

When you automate the build of your environments and software, you eliminate the
need for manual patching and manual restarts. Development, test and production
environments remain consistent, meaning less buggy code in production. In most
cases, only minor ongoing changes will ever be required to the automation code.

Our experience has shown that the build cost of automation code is approximately
40% higher than manually built environments. However, completing manual

changes to environments causes an ongoing cost exceeding 60 % that of automated
environments, and adds the risk of downtime or missed patches.

Cost

DevOg

Manue
Deplo

Time

Version control

Traditionally, you'll select the desired strategy for defining protocols over how new
code is merged into standard branches for development, testing and production, and
create additional feature branches for those that require longer development cycles.

As each feature is completed, developers can merge the changes from feature
branches into the primary development branch, but if multiple features are being
developed concurrently, this process can get bogged down. If you don’t have the
ability to deploy regularly and developers are left to work on projects for weeks at a
time, it increases the risk of bugs and longer cycle times to production.

base2services.com.au

BASE2

eBOOK | Creating a Deployment First Strategy SERVICES
When Containerizing .Net on AWS

With version control, your developers regularly commit all new work to the trunk, and
release branches can be worked on and tested concurrently as main work continues
on the trunk.

When the branch is frozen for final testing before release, it can be tagged as a
reference snapshot, then packaged and released to customers. Release branches
remain in maintenance mode, while tags represent final shipped versions.

Microservices

Migration opens up a lot of other options and how you deploy them. By
containerizing, you can enable a deployment first culture, taking advantage of the
offerings of AWS and enabling a modernization of workloads and workflows.

Microservices mean you can break up apps into lots of little pieces, and run them as
isolated services. This has multiple benefits, chiefly the ability to scale independently,
and avoid issues related to one piece breaking and causing the entire workflow to
grind to a halt.

Instead, development teams can be broken up to work on smaller bits, allowing you
to prioritize a specific customer or feature. Since each piece has its own deployment
pipeline, you can contain problems and speed deployments, increasing velocity
through continuous delivery to get features out the door faster.

Separated workflows

If the majority of the team is working steadily to develop and release a major feature
as requested, but a new customer signs up with a specific condition or demand, you
can advance bits of the new project without slowing down progress.

To quickly fast-track the necessary item, your CI/CD can spin up one or more new
environments along the pipeline, and one or more developers, often called a feature
team, can be assigned to go off onto that path. The production environment can
continue to run, while the development environment can run more tests for
performance and security easily without impacting overall productivity.

At the same time, you avoid having the larger team stepping on the feature teams’
toes with the bigger application. This allows you to bring a level of control to your
workflows and priorities that you can’t achieve in a monolith environment. It is ideally
suited for rapid feature releases.

base2services.com.au

BASE2

eBOOK | Creating a Deployment First Strategy SERVICES
When Containerizing .Net on AWS

Why Use Linux Containers?
Migrating to AWS and Linux containers delivers a broad range of operational
benefits.

High-density, isolated application hosting

Linux containerization allows your applications to be bundled with their own libraries
and configuration files. They can then be executed within the container, in isolation
on a single OS kernel.

This high-density approach can significantly reduce costs associated with hosting,
allowing you to run multiple applications or tasks on a single host while maintaining
security and access to data. By using containers, you can minimize idle capacity and
maximize overall resource utilization improving overall cost efficiency.

Cross-platform functionality

Containers also include application code or binaries, as well as any and all required
dependencies. This capability for runtime packaging and seamless deployment
makes it simple to migrate applications from one host to another.

Your applications can be readily tested to ensure that each one behaves consistently
in all environments, whether it is being utilized on a developer laptop or a production
environment. This allows for rapid feedback and correction for a faster release.

base2services.com.au

BASE2

eBOOK | Creating a Deployment First Strategy SERVICES
When Containerizing .Net on AWS

Container Orchestration

Container orchestration automates the deployment, management, scaling, and
networking of containers. Container orchestration can be used in any environment
where you use containers. It can help you to deploy the same application across
different environments without needing to redesign it.

Orchestrators give you an abstraction layer on top of conventional hosting
environments, so you can stop “running applications" and control everything from
the orchestrator. It will keep track of running containers, continually monitor the
existing state, evaluate it against the expected state, and provide corrections as
needed.

Should an application go down, the orchestrator automatically spins up another
container to run your application on the next available host. This deployment
abstraction that containers provide will enable you to focus on your applications,
without splitting time and resources to handle dependencies with underlying hosts
and infrastructure.

AWS provides many services that remove the heavy lifting from managing
infrastructure and configuration, and the need to maintain internal expertise. ECS
and EKS are container orchestrators that are managed by AWS requiring little to no
time from your developers.

Resource management

Containerization delivers immutable resource management as an effective approach
to run microservices and other types of distributed systems designed to continually
improve infrastructure and application functionality.

When moving to Linux containers, you can offload host resource management onto
AWS. This means your infrastructure is less of a burden operationally, as the
platform can manage all hosts your applications are running on.

You may not even need to manage the OS, but if you do, Linux is more lightweight
than Windows. With Linux containers, each service runs individually. If one service
needs to scale up, you don’t have to scale up each service but can scale
independently using small containers.

base2services.com.au

BASE2

eBOOK | Creating a Deployment First Strategy SERVICES
When Containerizing .Net on AWS

Immutability and repeatability

Linux containers deliver isolated, immutable infrastructures that are consistent,
reliable, and predictable. This approach supports repeatability and reduces
configuration drifts. Deployments are simplified since they don’t have to support
upgrade scenarios; every upgrade is simply a new deployment.

Since there are no differences between environments, testing and debugging are
also simplified. The same process to deploy the new version is used to roll back to
older versions, making deployments safer, and improving security.

The base images are consistent and repeatable, making it easy to scale on demand
and implement auto-scaling for even faster growth and feature deployment. Taking
advantage of a cloud-native architecture enhances all of these benefits.

Cost benefits of Linux containers
Linux containers provide significant cost benefits compared to Windows containers
and Windows Server.

Linux containers are smaller in size than Windows containers and support most task
definitions reusing the amount of additional scripting typically done in PowerShell. In
addition, Linux containers have no licensing costs.

The effort needed to configure Windows containers is often 30% higher or more
than with Linux, and requires skills not usually available in people with container
experience.

Windows Server and Windows containers also require OS licensing, which varies
based on your End User License Agreement (EULA) but could amount to more than
30-40% in additional costs.

200
Licensing Cost
150 |
=
3
additional costs.
© 100|
Effort
r The effort needed to configure
50 i
Windows containers is often 30%
higher or mare than with Linux.
0l
Linux Windows
Container Container

base2services.com.au

BASE2

eBOOK | Creating a Deployment First Strategy SERVICES
When Containerizing .Net on AWS

Why is a Cloud-Native Architecture Important?

Companies benefit from implementing a cloud-native architecture in multiple ways
and across many dimensions. Primarily, a cloud-native architecture can minimize
downtime, reduce infrastructure provisioning times, enhance scalability and
performance, and cut down on operational tasks. All of your O/S and its support is
handled by your cloud vendor, including scalability, uptime and patching. This alone
is a strong argument for migrating to the cloud. Your team can focus on developing
the business logic rather than having to configure the infrastructure.

While you can implement a cloud-native architecture yourself, the costs can be
prohibitive. Overhead and hiring the right talent for implementation and ongoing
maintenance can require continual justification for CAPEX. By outsourcing the
implementation, and ongoing engagement and management, you can shift these
costs to your OPEX budget, with an ongoing monthly fee as compared to a large
annual expenditure.

base2services.com.au

BASE2

eBOOK | Creating a Deployment First Strategy SERVICES
When Containerizing .Net on AWS

Steps of Migrating to .Net

Completing the following steps can help ensure a flawless migration from older
NET versions (such as .NET Framework) to the latest version of .NET (previously
known as .NET 5/Core).

Analyze
<®

Strategize 04

il

()

%

1. Analyze

Scan your .NET Framework applications using the AWS Porting
Assistant for .NET and generate a code compatibility assessment report,
identifying dependencies and code that are incompatible with the latest
.NET version, and estimating the level of effort involved for your
migration.

2. Strategize

Formulate a roadmap to achieve a deployment first NET migration.
Ensure you give yourself enough time to code your infrastructure. You
will need to refactor. Keep this in mind when setting yourself timelines.

3. Design

Designing your infrastructure is the next step. With containerization, you
will be able to separate services easily. Remember this in the design
phase so you can take full advantage of this option once you launch on
the AWS cloud. Determining and agreeing on your branching and
tagging strategies is the next step. It is critical that every developer is
using the same conventions.

4. Deployment Build
The baseline CI/CD pipelines need to be put in place next, to guide
workflows and allow automation where applicable.

base2services.com.au

BASE2

eBOOK | Creating a Deployment First Strategy SERVICES
When Containerizing .Net on AWS

5. Infrastructure as Code

The infrastructure should be designed and developed using code
only. Manually configured infrastructure cannot be automated or
repeated increasing the risk of failure. This standardizes your
workflows for easy migration across environments, and enables fast,
easy reproduction with the click of a button. Using code provides for
reproducibility, recoverability, auditing, automation and change
management.

6. Refactor

Make all necessary code changes to your application according to
the assessment report. The assessment report provides your
development team insight into exactly where to focus their efforts
and outlines the expected effort in application code changes, such as
updating packages and replacing libraries.

7. Test

Unit testing is simplified, since a side benefit of the latest .NET
version is that the same container used in production can be run on a
developer’s laptop environment. This allows them to run the local
version with all dependencies including database, to improve local
development from their laptop.

8. Deploy

Create the test infrastructure from the infrastructure code templates.
This can be achieved by using a Docker image and a CI/CD pipeline
to complete the container image, then publishing that to the
repository on AWS.

9. Repeat until required quality is achieved

Once your infrastructure is stabilized, you can complete the final
testing, including penetration and vulnerability scans. Vulnerabilities
will be identified in the pipeline, causing the deployment to fail and
give feedback, and if anything breaks, it can be fixed before the next
deployment attempt.

10. Productionize

The final step is building the production infrastructure. By deploying
workloads on AWS using CI/CD you can be assured consistency and
reliability of your deployment is achieved.

Before going live, be sure that you have your monitoring and security in place.
Containerizing with Linux and adoption of a deployment first strategy can deliver
multiple benefits and provide a foundation for long-term stability.

base2services.com.au

BASE2

eBOOK | Creating a Deployment First Strategy SERVICES
When Containerizing .Net on AWS

Benefits of Linux and Containerization

This approach is all about automation. The more you can automate, the better your
result will be. Removing the need to manually deploy, patch or maintain uptime is a
significant saving in time and cost.

Additionally, with the reduced size of Linux containers, you will find that scaling in this
environment is much quicker, reducing the time your customers need to wait for a
performing system.

Deployment first strategies introduce repeatability, scalability and automation. These
features assist in the ongoing performance of the system, but also the ongoing ability
for your developers to continually develop, without impact. Developers are not
delayed by long periods of waiting for changes with the introduction of feature teams
and isolated environments.

Our consulting services can get
you from your current position
to a stable, containerized .NET
configuration 70% faster.

Many organisations have already started to move to deployment first Linux container
architectures for .NET. Not only have they achieved scalability and improved
developer throughput, they have also discovered considerable cost savings.

If you think it's time for migration, but don’t feel prepared or equipped to handle it
yourself, we can help. Our consulting services can get you from your current position
to a stable, containerized .NET configuration 70% faster. Then, you can start to
enjoy the benefits of deployment first, Linux-based architecture.

base2services.com.au

Get in touch

BASEZ2 Services is a global leader in Cloud Delivery, Operations
and Management. Specialising in DevOps, AWS and cloud-native
computing.

We enable organisations to accelerate innovation through
automated, highly secure, repeatable and scalable cloud-based
solutions. Contact us today to find out how we can help you.

USA AUSTRALIA GERMANY

11801 Domain Blvd Level 3 elc

3rd Floor 44 Clifton St Potsdamer Str. 182
Austin TX 78758 Prahran VIC 3181 10783 Berlin

+1 646 586 9485 1300 713 559 +49 30 2000 5370

info@base2services.com

This document and all its components are protected by copyright. No part may be reproduced,
copied or transmitted in any form or by any means without the prior written permission of
base2Services Pty Ltd.

base2services.com.au

